Jan 072014
 

The extreme cold snap encompassing a large portion of continental North America (termed a Polar Vortex, which you can learn more about via NPR and Quartz) has made it dangerous to remain outside for long, even when bundled up in more layers than a Thanksgiving turducken. While we can rely on our technological ingenuity to find solutions to this chilling problem, what about our insect neighbours who have been left out in the cold?

Eurosta solidaginis has a warning for you.

Eurosta solidaginis has a warning for you.

Most insects seek shelter in the fall before temperatures begin to dip, either laying their eggs in sheltered locations, or hiding out as larvae, pupae or adults in the comparative warmths of the leaf litter, deep within trees, or even taking advantage of our warm hospitality and rooming with us in the nooks & crannies of our homes. But what about species like the Goldenrod Gall Fly (Eurosta solidaginis) which are literally left hanging out in the middle of nowhere and completely at the mercy of Jack Frost?

Polar Vortex vs. Goldenrod Gall Fly. Polar Vortex map courtesy of RightWeather.com, Eurosta solidaginis range map from Foote et al. 1993

Polar Vortex vs. Goldenrod Gall Fly. Polar Vortex map courtesy of RightWeather.com, Eurosta solidaginis range map from Foote et al. 1993

If you live in eastern North America, you’re probably familiar with the Goldenrod Gall Fly, even if you don’t realize it. This fruit fly — the ripe fruit kind (family Tephritidae), not the rotting banana kind (family Drosophilidae) — is one of the more ubiquitous insects, and is found pretty well anywhere goldenrod grows, including in urban environments like parks & abandoned lots. Adults are weak fliers and aren’t often seen unless you’re actively looking for them, but in this case, it’s the larvae that you’ve likely seen a hundred times — rather, you’ve likely seen their makeshift homes a hundred times. The larvae of this species live within the stem of goldenrod plants (Solidago spp.), and trick the plant into growing a big spherical nursery for the fly maggot to live & feed in (technically called a ‘gall’), and which stands out like the New Year’s Eve ball in Times Square, albeit without the mirrors and spotlights of course.

Goldenrod Gall Fly galls in Guelph, Ontario

Goldenrod Gall Fly galls in Guelph, Ontario

While these galls provide a modicum of protection from predators and parasitoids (although some still find a way), they don’t provide much, if any, insulation from the elements, meaning that the larvae must be able to survive the same air and windchill temperatures that we do. To do so, Goldenrod Gall Fly larvae are not only able to safely freeze without their cells being torn apart by tiny ice daggers by partially drying themselves out, but they also change the temperature their tissues freeze at by manufacturing anti-freeze-like chemicals. Together, these cold-tolerance strategies allow the maggots to survive temperatures as low as -50°C (-58°F)! Just take a moment to consider what it would feel like to stand outside almost anywhere in central North America on a day like today wrapped in only a few layers of tissue paper; BRRRRRRR!

All that stands between a Goldenrod Gall Fly maggot & the extreme cold is a few centimeters of dried plant tissue.

All that stands between a Goldenrod Gall Fly maggot & the extreme cold is a few centimeters of dried plant tissue. (The maggot is the little ball of goo in the bottom half of the gall)

For us, the multiple warm layers of clothing we bundle up in on days like today allow us to survive and eventually have children, thus passing our genes along, despite living in a habitat that is occasionally unfit for human life. It would stand to reason then that other organisms would also enjoy the same benefits and evolutionary advantage from thermal insulation, but, for the Goldenrod Gall Fly at least, the complete opposite is true! Goldenrod isn’t exactly the most robust structure, and it doesn’t take much effort from the wind, passing animals like people or dogs, or other not-so-freak phenomena to knock goldenrod stems over, allowing galls to be buried in snow and protected from the harshest temperatures (snow is an excellent insulator, and temperatures in the snowbank generally hover around 0°C (32°F)). This would intuitively seem like a good place to be if you were fly maggot, out of the daily temperature fluctuations and extreme cold and in a more stable environment. However it turns out that individuals that mature in galls on the ground and covered with snow are at a significant disadvantage evolutionarily speaking, with grounded females producing 18% fewer eggs than females who grew up fully exposed to the elements (Irwin & Lee, 2003)!

This Goldenrod Gall Fly, while warm(er), will likely produce fewer offspring when it emerges (assuming it's a female).

This Goldenrod Gall Fly, while warm(er), will likely produce fewer offspring when it emerges (assuming it’s a female).

Why might that be? Well, let’s think about it for a moment. If you’re a fly maggot hanging out above the snow when it’s -20°C, you’re likely going to be frozen solid and in a cold-induced stasis, not doing much of anything, even at the cellular level. But, if you’re as snug as a ‘bug’ under the snow at ~0°C, your body won’t be frozen, and thus you’ll be forced to carry on with day-to-day maintenance & cellular functions like breathing, waste removal, etc, even if only minimally. When you live in a closed system like a hollowed-out stem gall on a dead plant without any food, any energy you spend on daily functions as a “teenager” putting in time under the snow all winter long means you’ll have less energy you can put towards making eggs as an adult. If you’re a Goldenrod Gall Fly maggot, it pays to be left out in the cold!

Foote, R.H, Blanc, F.L., Norrbom, A.L. (1993). Handbook of the Fruit Flies (Diptera: Tephritidae) of America North of Mexico. Comstock Publishing Associates, Ithaca NY. 571pp.

Irwin J.T. & Lee, Jr R.E. (2003). Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis, Oikos, 100 (1) 71-78. DOI:


Some additional thoughts: You’d think that a nearly 20% difference in egg production would create significant evolutionary pressure for Goldenrod Gall Fly females to select the strongest, least-likely-to-break-and-fall-over goldenrod stems. It’s possible that the randomness of goldenrod stem breakage negates any evolution of host plant selection, but I would tend to doubt it. I did a quick Google Scholar search to check whether anyone had examined this in greater detail, but I didn’t see anything. Perhaps an avenue of future study for an evolutionary biology lab out there?

Nov 222013
 

In the jungles of southern Mexico there are treasures that glitter and sparkle more than even the most luxurious displays at Tiffany’s, so rare we’ve only ever caught a glimpse of them once. These jewels are made not of stone, crystal or precious metal, but rather segments, cuticle and a punctate mesonotum. Yes, like usual, I’m talking about a fly.

And what a beautiful new Soldier Fly (Stratiomyidae) it is! Meet Paraberismyia chiapas Woodley, which has only just been described, despite having been a prized possession for nearly 20 years.

Paraberismyia chiapas Woodley - Female holotype (Figures 1 & 2 from Woodley, 2013)

Holotype Female of Paraberismyia chiapas Woodley by Norm Woodley CC-BY (Figures 1 & 2 from Woodley, 2013)

A member of the Beridinae, a subfamily of soldier flies known for their colourful & metallic appearance, Paraberismyia chiapas had been recognized as an undescribed species by Norm Woodley in 1995 when he described the genus Paraberismyia, but because he only knew of a single female specimen at the time, he decided to hold off on formally describing the species until he could locate additional specimens. Fast forward nearly 20 years, and a second specimen of Paraberismyia chiapas has yet to be collected, so Norm decided to not wait any longer and published this and 2 other new species in the journal ZooKeys earlier this week.

Having only a single specimen collected in 1985 by Amnon Friedberg (who happens to be the same guy who studied and described several of the “ant-winged” fruit flies that went viral earlier this month — the dipterological community is an incestuous little group…), we don’t know much about this species, other than it lives in the Chiapas region of Mexico (hence it’s species name) at an elevation of 2,000 metres.

Despite there being a large entomological survey project going on in the region for the past 5 years (the LLAMA project, which, while focused on leaf-litter arthropods, you could imagine would have collected a bright green & gold fly that likely breeds and develops in leaf-litter like other members of the Beridinae), Paraberismyia chiapas has yet to make a second appearance, leaving many questions about it’s apparent rarity unanswered: is this species only found on a single mountain top, or is it restricted to a small expanse of high elevation habitats in the southern Sierra Madre de Chiapas mountain range? Is the window when adults are actively flying so short that other expeditions have just missed it? Or more concerning, has Paraberismyia chiapas disappeared completely, stolen from us before we had even given it a name? Obviously we can’t answer any of these questions, or the hundreds more regarding it’s biology and natural history (including why it’s so stunningly coloured), until someone hits pay dirt and rediscovers this little gem.

The other 3 species in the genus Paraberismyia are equally stunning, and I highly recommend taking a look at them (the paper is open access).
Woodley N. (2013). A revision of the Neotropical genus Paraberismyia Woodley (Diptera, Stratiomyidae, Beridinae) with three new species, ZooKeys, 353 25-45. DOI:  (OPEN ACCESS)

Nov 062013
 

There’s a pretty remarkable fly photograph making the rounds of social media today, and while it originally had me going “Oooooh!”, the more I think about it, the more I feel like we’re staring at clouds.

It started when Ziya Tong tweeted a photo of a Goniurellia tridens (a fruit fly in the family Tephritidae) displaying its wings:

Continue reading »

Oct 312013
 

As has become tradition in the University of Guelph Insect Systematics Lab, when Halloween rolls around, we pull out the knives & hand tools and make a trip to the produce aisle to get ready for a new Ent-O-Lantern. This year our lab is considerably smaller than in the past (4 grad students, an enthusiastic undergrad, and a significant other), but what we lacked in sculptors, we made up for with dedication!

So what was this year’s creation? Behold, a nightmare for social wasps everywhere, the Spooky Strepsiptera!

Spooky Strepsiptera for Ent-O-Lantern 2013

Spooky Strepsiptera looking for love in all the right places — Ent-O-Lantern 2013

That pumpkin wasp doesn't stand a chance with a Strepsiptera salad hanging around -- Ent-O-Lantern 2013

That pumpkin wasp doesn’t stand a chance with a strepsipteran salad hanging around — Ent-O-Lantern 2013

The big male twisted-wing parasite riding atop a poor wasp’s abdomen is in search of females, who spend their lives wedged beneath the tergites of a social wasp’s abdomen, only to be consumed from the inside out by their own progeny! Yes, everything about the Strepsiptera is nightmare fodder.

Strepsiptera are also renowned for their odd wing morphology; males have a single pair of functional wings while their second pair of wings have evolved into haltere-like knobs, similar to true flies in the order Diptera. Unlike flies however, the functional wings of Strepsiptera are the hind wings, while the fore wings form the haltere-like knobs!

Needless to say, there was a lot to take into consideration when putting together this pumpkin. Here’s the ingredient list and a fully lighted photo to show how it all went together.

Pumpkin – carved to look like a wasp abdomen

Orange Bell Peppers – female Strepsiptera poking out from under the pumpkin tergites

Butternut Squash – thorax and abdomen of the male, carved with great care to show tergites & segments

Sweet Potato – head

Ornamental corn – compound eyes

Cauliflower – filiform antennae

Dried Mango Slices – maxillary palps

Carrots – legs (jointed with wire)

Cabbage – “twisted” functional hind wings which give this order their common name

Bell Pepper stems – fore wing “halteres”

Ent-O-Lantern 2013 Construction

Ent-O-Lantern 2013 Construction

We just do these big creations for fun, but our department also held a pumpkin carving social event at lunch, so we washed off our tools and put together a true horror show from a single pumpkin: Frankendrosophila!

Well, not really Frankendrosophila, just a Drosophila who’s been subjected to some genetic tinkering with his Homeobox transcription genes, resulting in Antennapedia! SCIENCE!

Drosophila Antennapedia Horror show for Ent-O-Lantern 2013

Drosophila Antennapedia Horror show for Ent-O-Lantern 2013

Antennapedia in the light -- Ent-O-Lantern 2013

Antennapedia in the light — Ent-O-Lantern 2013

Thanks to Meredith, Nichelle, Grace, Jordan & Steve for getting into the spirit of the season and putting together 2 awesome Ent-O-Lanterns this year!

Did you carve an Ent-O-Lantern this year? Leave a link in the comments below so we can all marvel at your insect geek pride!

 

Sep 042013
 

Things I didn’t expect to do today: talk about flies live on BBC Radio 2!

I made my radio debut this afternoon when I helped out with Simon Mayo’s Homework Sucks! segment of Drivetime. Homework Sucks! is a regular feature where listeners send in questions (whether from their kids homework or otherwise), and the BBC finds experts to give a hand with the answers.

Today’s question: Can insects smell, and if so, how far away can they smell things? You can listen to my answer thanks to the recorded and archived edition of the day’s episode on the BBC website (skip to 1:39:30 for my segment).

So how’d my first brush with the mainstream media happen? I got a call from Richard Levine, the Public Affairs Officer for the Entomological Society of America, asking if I’d be interested in the opportunity to speak on the BBC about how flies smell. There was a catch though: the segment was going to be live, and was going to start in less than 10 minutes! So, I ran across the lab, grabbed R.F. Chapman’s The Insects: Structure and Function off the shelf, quickly refreshed my memory on volatile chemoreception in insects, then jumped on Google Scholar to see if I could find an estimate of how far away some insects can sense scents (which isn’t easy when your fingers are quivering from the adrenaline rush & nerves). Before I even had Chapman opened, a BBC producer had called me to explain what was going to happen and to get my details figured out, and then 5 minutes later another producer called and I was on hold waiting for my opportunity to go on the air! A few minutes after that I had given my spiel, and was sitting at my desk wondering what had just happened, while trying to dissect what I had said and whether I could recall making any goofs!

While I was sure I stumbled and mumbled my way through it at the time, I actually think I sounded pretty coherent after listening to the recording, and it would seem people enjoyed it as well (thanks for the feedback to those who’ve given it!). I’m giving a lot of the credit for me not sounding like a bumbling n00b to Breaking Bio, which has provided me the opportunity to practice talking about science in an informal setting, and in a digital format. It just goes to show that goofing around on the internet with your friends can have surprising benefits for your work!

 

Aug 232013
 

This morning, shark mega-enthusiast & PhD student David Shiffman (@WhySharksMatter) tweeted

Here’s the screen cap image a little larger if you can’t make it out (click to embiggen further):

ShiffmanStraddlingShark

 

Is reverse Google Image search able to identify sharks to species? Yes, David included the search term “lemon shark” (David just let me know that Google included the text search terms itself… my mind is blown), but the fact that Google returned “Best guess for this image: lemon shark” might imply that they’re playing around with visual identification services, not just photo comparison. Considering how well reverse image search does at aggregating similar images, how many shark images are online & indexed by Google, and that many of those images are probably tagged with a species name nearby or in the metadata, I think the concept is entirely plausible.

Seeing how insect ID is kind of important to me, I tried it with a few of my insect photos, and got nothing. I even tried improving the odds by using search terms like David HAL 9000 Google did, and this is all I got:

euarestatest

 

I was beginning to get discouraged, but Marianne Alleyne (@Cotesia1) made a good point: perhaps it was the fact that David was sitting on the shark that mattered!

So, I reverse Google Image searched this photo

Fly Wrangler_20130823

 

And it still failed.

Apparently Google things this fly wrangler looks like a bride. Not really sure what to make of that...

Apparently Google thinks this fly wrangler looks like a bride. Perhaps their search algorithm could use a little more work after all.

Clearly Google loves sharks and hates flies (and passenger pigeons). Not cool Google, not cool.

I guess we’ll just have to stick to other web-based tools for identifying flies for a little while longer. Darn.

Jul 092013
 

Hey blog, what’s new? Oh, that’s right, nothing lately… My bad. To say the past few months have been hectic would be a bit of an understatement, but that’s a tale for another time. To kickstart my bloggy brain cells, I figured I’d ease back into it with a Tuesday Tune, then maybe a new photo, and quite possibly a rage-driven rant observation on society later this week. Fun!

Normally with Tuesday Tunes we get a song that may have insects in the title, the lyrics, or maybe a cameo in a video. This week’s song not only features a great title & lyrics, plus a psychedelic & morphologically awesome video, but also some killer album art!

No, I don’t know why a mosquito is changing a baby, but damn if that’s not a great album cover!

Meet Mosquito by indie rockers Yeah Yeah Yeahs (be sure to watch to the end) –

If you thought natural selection would punish a hyper-obvious mosquito like the one in the video, you’d normally be correct. However, the psychedelic Psorophora ferox would beg to differ!

Psorophora ferox demonstrating that art isn’t always crazier than nature! Photo by Kathleen Chute

Thanks to Dr. Cameron Webb (@Mozziebites) for alerting me to this song when it came out earlier this spring!

———-

This song is available on iTunes: Mosquito – Mosquito (Deluxe Version) by Yeah Yeah Yeahs

May 132013
 

On Mother’s Day, many men pick up flowers or make breakfast in bed for their partners to show their appreciation for everything moms do. If you’re a taxonomist, you can go a step further and give the eternal gift of patronymy (or perhaps matronymy?) by naming a new species after the mother of your offspring!

In a recent Zootaxa paper, that’s exactly what Heron Huerta did, naming a new species of Mexican Scatopsidae Colobostema marielae, and earning extra brownie points in the etymology:

This new species is named after my wife, Mariela Trujillo De la Cruz, for her unconditional support, love and enthusiasm for my projects.

– Huerta, 2013

Scatopsidae are commonly referred to as minute black scavenger flies (or even less romantically, dung midges), and with larval habitats ranging from the decaying to the defecated, having something like this named for you may seem less like an honour and more like a thinly veiled insult. But when you consider your fly is 1 of only ~250 species known, that your fly’s relatives are found literally around the world and have been helping keep us out of the rot since the time of T. rex, and that, while not as flashy or well known as other organisms, someone has devoted their life to learning all there is to know about your fly and has decided that you are so important you should be forever immortalized as the namesake for this unique being, well, that’s a pretty powerful gift.

Happy Mother’s Day.

A Colobostema species from Alabama. Colobostema mariela apparently looks much like this, but with a uniquely constricted tergite 7 (you’ll just have to take Heron’s word on this one). Photo by Robert Lord Zimlich, used under CC BY-ND-NC 1.0 licence.

——–

Nominate this species for New Species of the Year!
HUERTA H. (2013). New species of the genus Colobostema Enderlein (Diptera: Scatopsidae) from Mexico, Zootaxa, 3619 (2) DOI:

Apr 302013
 

Stop me if you’ve heard this one, but what do you call a wingless fly? Apterous of course!

Proving once and for all that taxonomists do indeed have a sense of humour, meet Platypalpus apterus De Freitas & Ale-Rocha.

Platypalpus apterus Diptera Hybotidae

 

Winglessness has independently evolved more than a hundred times across the order Diptera, but as this dance fly (Hybotidae) illustrates, the results are anything but pedestrian. Like its fully-winged relatives, Platypalpus apterus is an active hunter, only in this case scouring beneath the bark of Polylepis trees for earthbound arthropods unable to escape its piercing beak.

Considering Platypalpus apterus‘ inability to fly, it’s poetic that it was collected high above the clouds in the Andean paramo of Ecuador, in an area that is as beautiful as it is barren. In fact, aptery is incredibly common at high altitudes, with many different fly families exhibiting high levels of wingless diversity on mountainous islands set amongst the sky. There are several theories on why it may be advantageous for flies to forego their wings, including as a defense against strong winds capable of carrying individuals away and colder, cloudier conditions at altitude impacting the flies’ ability to warm up their flight muscles.

——————-

Nominate this species for New Species of the Year!
De Freitas-Silva R.A.P. & Ale-Rocha R. (2013). A new apterous species of Platypalpus Macquart (Diptera: Hybotidae, Tachydromiinae) from Ecuador, Zootaxa, 3636 (4) 590-596. DOI: