Dec 112014
 

Nature published an article this week with some nice infographics that illustrate the astonishing number of species considered threatened by the International Union for Conservation of Nature, which is pretty depressing, at least if you look at the vertebrates. In what was a nice surprise, they actually included data on insects in addition to the fuzzy wuzzy taxa, noting that there are currently 993 species of insects considered threatened by the IUCN.

993 species is quite a lot, right? I mean, mammals have 1,199 threatened species, and birds 1,373, so you’d be forgiven for thinking that insect conservation is actually not too far behind the curve. But what happens when you dig a little deeper into that data?

If I were to ask you what you thought the order of insects is with the highest number of IUCN listed species, I’d be willing to bet you’d guess moths and butterflies (Lepidoptera), or possibly beetles (Coleoptera). I know that’s what I assumed. I’ve prepared a few interactive graphs of my own to help break down what those 993 species are, and how they fit into the larger picture of insect diversity (hover over wedges to see percentages, and over taxon labels to find some of the smaller wedges). And surprise, it’s probably not what you were expecting.

That’s right, dragonflies, damselflies (the Odonata), grasshoppers, katydids, and crickets (the Orthoptera) together make up more than 50% of the 993 threatened insect species. Surprised?

Next, let’s examine the total number of species that have been assessed by the IUCN, which includes the 993 species listed as threatened, plus extinct species, species considered not at risk, and species where there is insufficient data to make any conclusions.

Somewhat unbelievably, 53% of all insects assessed by the IUCN belong to the Odonata. 53%. Talk about a massive skew in the data. For context, compare the IUCN’s assessment numbers to the total known diversity for each insect order.

Look at the relative sizes of the blue Odonata wedge and the red Orthoptera wedge across all three graphs: when we look across everything we know about insect diversity, 50% of IUCN threatened insects species belong to just two orders of insects, which together make up only 2.5% of the total insect diversity. Incredibly, nearly half of all known Odonata have been assessed by the IUCN. Compare that to some of the major orders (major both in the sense of diversity and ecological/economic impact), like flies (Diptera) where 8 (the Where’s Waldo slice of pie near the top of the Assessed Graph) out of the 150,000 160,000 species we have names for have been formally assessed.

8 species of flies.

Out of 150,000 160,000.

Wow.

What’s more, some other insect orders which you would think would be correlated to the high assessment numbers of mammals and birds, specifically their ectoparasitic lice (Pthithiraptera, here included in the Psocodea) and fleas (Siphonaptera), have been completely neglected, with only 1 louse and 0 flea species assessed. Granted not all ectoparasites have high host specificity (case in point, the Passenger Pigeon louse), but when you realize that conservationists working to save charismatic species like condors and black-footed ferrets have likely caused the extinction of their respective lice (none of which are included in the IUCN Red List by the way), and add in the fact that we’ve only described a tiny fraction of the total diversity of insects, we need to assume that the conservation status of insects is being dramatically, drastically, underestimated.

It certainly seems like conservation biologists have been preferentially looking at the bigger insects (Odonata, Orthoptera and Lepidoptera make up 75% of assessed species), and pretty much ignoring the rest. It’s hard to argue with that strategy considering how difficult it is to find, identify, and track smaller insects like beetles, flies and bugs, but if we want to give a proper status report on the state of global biodiversity, we have a lot of work left to do, and any interpretations involving insect diversity need to be taken with a goliath beetle-sized grain of salt.

And no, the goliath beetle, one of the largest insects alive today, hasn’t been assessed by the IUCN either. Go figure.

Oct 142014
 

Cyanide: poison of choice for jilted lovers, mystery writers, and entomologists alike. But we’re not the only ones to employ this potent potable in our chemical arsenal; polydesmid millipedes have been defending themselves with cyanogenic compounds for millions of years.

Of course, when one organism figures out a new way to protect itself using something that kills lesser creatures, it’s usually not long until somebody else evolves the ability to capitalize on that protection, even when it’s something as deadly as cyanide. Enter 2 new species recently described by John Hash of UC Riverside, Megaselia mithridatesi and Megaselia toxicobibitor, the Rasputins of the scuttle fly world.

Megaselia

Megaselia is an immense genus of Phoridae with a wide diversity of natural histories, so it’s perhaps no surprise that something like cyanide-siphoning could show up here, but that doesn’t reduce the magnitude of such a finding. But how does one go about associating tiny flies unknown to science with murderous millipede defenses?

John works primarily on another genus of scuttle fly that’s also associated with millipedes, Myriophora. Rather than stealing cyanide, these flies prefer to parasitize millipedes protected by another noxious chemical family, benzoquinones. To find these flies, he stresses the millipedes a little by shaking them in a paper towel-lined plastic tube hard enough to piss them off, but not enough to cause physical damage, leading them to exude their defensive chemicals onto the paper towel. John then laid out these poisoned paper towels, and sometimes tied up the annoyed millipedes like the sacrificial goat in Jurassic Park using dental floss, and waited for the flies to come in to the bait. While John was expecting to find new Myriophora species and associations, he states in his paper that discovering a Megaselia/millipede association was a golden example of serendipity in science.

With specimens and natural history notes in hand, John returned to the lab and gave these 2 new species especially fitting names; mithridatesi is an homage to King Mithridates IV of Pontus, who famously immunized himself to a variety of poisons by consuming them in small, sub-lethal quantities, and toxicobibitor, which literally translates to “poison drinker” from Latin.

If you want to hear more about John’s work, and see millipedes on dental floss leashes, check out this video from the Natural History Museum of Los Angeles County, which was filmed while John was down helping out with the Zurqui All Diptera Biodiversity Inventory in Costa Rica. It was while he was here, surrounded by dozens of other dipterists, that he discovered the poisonous habits detailed in this paper. That certainly makes for a killer field trip if you ask me, even without the cyanide.

—-

Hash J.M. (2014). SPECIES OF MEGASELIA RONDANI (DIPTERA: PHORIDAE)
ATTRACTED TO DEFENSIVE COMPOUNDS OF CYANOGENIC
MILLIPEDES (DIPLOPODA: POLYDESMIDA), Proceedings of the Entomological Society of Washington, 116 (3) 273-282. DOI: DOI: 10.4289/0013-8797.116.3.273

 

If you’re curious, I asked Millipede Man Derek Hennen about the biology of cyanide-laced millipedes, and he provided a few references and info.

Mar 202014
 

Taxonomist Appreciation Day has just come to a close where I am, and it was a lot of fun to see so many people express their thanks for the work that taxonomists do. I highly recommend browsing through the hashtag #LoveYourTaxonomist on Twitter, and seeing what people had to say.

I thought it might be interesting to take a look at what taxonomists were up to on this holiest of days. Personally, I reviewed a really great manuscript about an exciting new species of fly that I can’t wait to talk about more when it’s published, but here’s a quick run down of the new animal species* that were officially unveiled to the world on March 19, 2014.

Scheffersomyces-henanensis

 

We’ll start small with a new species of yeast, Scheffersomyces henanensis, described from China today.

Ren Y, Chen L, Niu Q, Hui F (2014) Description of Scheffersomyces henanensis sp. nov., a New D-Xylose-Fermenting Yeast Species Isolated from Rotten Wood. PLoS ONE 9(3): e92315. doi: 10.1371/journal.pone.0092315

Pentacletopsyllus-montagni

This charming creature is Pentacletopsyllus montagni, a benthic copepod that was found deep in the Gulf of Mexico.

Bang HW, Baguley JG, Moon H (2014) A new genus of Cletopsyllidae (Copepoda, Harpacticoida) from Gulf
of Mexico. ZooKeys 391: 37–53. doi: 10.3897/zookeys.391.6903

Anacroneuria-meloi

 

Allow me to introduce you to Anacroneuria meloi, a Brazilian stonefly named for the person who collected it (Dr. Adriano Sanches Melo). This was one of two new species described in this paper.

Bispo, Costa & Novaes. 2014. Two new species and a new record of Anacroneuria (Plecoptera: Perlidae) from Central Brazil. Zootaxa 3779(5): 591-596. doi: 10.11646/zootaxa.3779.5.9

Hydrometra-cherukolensis

 

This odd looking creature, Hydrometra cherukolensis, is actually a true bug! The eyes are the bulges in the left third, and like all hemipterans, they have sucking mouthparts tucked under the head (not visible in this photo). The authors of this study described another species of these strange looking bugs as well.

Jehamalar & Chandra. 2014. On the genus Hydrometra Latreille (Hemiptera: Heteroptera: Hydrometridae) from India with description of two new species. Zootaxa 3977(5): 501-517. doi: 10.11646/zootaxa.3779.5.1

Nirvanguina-pectena2

 

This little leafhopper, Nirvanguina pectena, is only 1/2 centimetre long!

Lu, Zhang & Webb. 2014. Nirvanguina Zhang & Webb (Hemiptera: Cicadellidae: Deltocephalinae), a new record for China, with description of a new species. Zootaxa 3977(5): 597-600. doi: 10.11646/zootaxa.3779.5.10

Luchoelmis-kapenkemkensis

 

Not only was Luchoelmis kapenkemkensis described, but so was it’s (probable) larva, an unusual occurrence for insects.

Archangelsky & Brand. 2014. A new species of Luchoelmis Spangler & Staines (Coleoptera: Elmidae) from Argentina and its probable larva. Zootaxa 3977(5): 563-572. doi: 10.11646/zootaxa.3779.5.6

Susuacanga-blancaneaui

 

While not a new species, Susuacanga blancaneaui was transferred into the genus Susuacanga from the genus Eburia today. Taxonomists don’t just find new species, they also reorganize genera and species as they gain a better understanding of variations within and relationships between taxa.

Botero R, JP. 2014. Review of the genus Susuacanga (Coleoptera, Cerambycidae, Cerambycinae). Zootaxa 3977(5): 518-528. doi: 10.11646/zootaxa.3779.5.2

Ropalidia-parartifex

 

The authors of this study not only described a new species of wasp, Ropalidia parartifex, but they also produced a wonderfully illustrated identification key to help others recognize these wasps, as well as recording 6 species previously unknown to occur in China.

Tan J-L, van Achterberg K, Chen X-X (2014) Pictorial key to species of the genus Ropalidia Guérin-Méneville,
1831 (Hymenoptera, Vespidae) from China, with description of one new species. ZooKeys 391: 1–35. doi: 10.3897/
zookeys.391.6606

Platypalpus-abagoensis

 

Not only do taxonomists have to be able to recognize new species, they often also need to be able to illustrate how they’re different from one another. Here, the authors drew the final abdominal segments of a male Platypalpus abagoensis to demonstrate how it differs compared to the other 5 new species they were describing; the true intersection of art and science!

Kustov, S., Shamshev, I. & Grootaert, P. 2014. Six new species of the Platypalpus pallidiventris-cursitans group (Diptera: Hybotidae) from the Caucasus. Zootaxa 3977(5): 529-539. doi: 10.11646/zootaxa.3779.5.3

Callicera-scintilla

 

Perhaps the most striking new species described today, Callicera scintilla‘s species epithet literally means glimmering or shining in Latin. Another species was also described in this study, but alas, it isn’t a shiny copper.

Smit, J. 2014. Two new species of the genus Callicera Panzer (Diptera: Syrphidae) from the Palaearctic Region. Zootaxa 3977(5): 585-590. doi: 10.11646/zootaxa.3779.5.8

Cretophasmomima-melanogramma

 

Of course, not all insects described today are still around to learn their names. This fossil walking stick, Cretophasmomima melanogramma, has been waiting to be discovered for roughly 126 million years!

Wang M, Be´thoux O, Bradler S, Jacques FMB, Cui Y, et al. (2014) Under Cover at Pre-Angiosperm Times: A Cloaked Phasmatodean Insect from the Early Cretaceous Jehol Biota. PLoS ONE 9(3): e91290. doi:10.1371/journal.pone.0091290

Rukwanyoka-holmani

 

Continuing with fossils, Rukwanyoka holmani represents not only a new species of snake, but also a new genus, and is only known from a handful of vertebra.

McCartney JA, Stevens NJ, O’Connor PM (2014) The Earliest Colubroid-Dominated Snake Fauna from Africa: Perspectives from the Late Oligocene Nsungwe Formation of Southwestern Tanzania. PLoS ONE 9(3): e90415. doi:10.1371/journal.pone.0090415

Anzu-wyliei

 

What would a story about new species be without a dinosaur? Making headlines as the “Chicken from Hell“, Anzu wyliei was an omnivorous bird-like dinosaur believed to have had feathered arms, which inspired the generic name: Anzu, a Mesopotamian feathered demon. The species epithet, wyliei, however, is in honour of Wylie J. Tuttle, the grandson of Carnegie Museum patrons! There’s no data provided whether young Wylie has the temperament or feathers of a Chicken from Hell, however.

Lamanna MC, Sues H-D, Schachner ER, Lyson TR (2014) A New Large-Bodied Oviraptorosaurian Theropod Dinosaur from the Latest Cretaceous of Western North America. PLoS ONE 9(3): e92022. doi:10.1371/journal.pone.0092022

Phyllodistomum-hoggettae

 

Finally, meet Phyllodistomum hoggettae, one of two parasitic trematode worms described today. This species is also named in someone’s honour, specifically Dr. Anne Hoggett, co-director of the Lizard Island Research Station, a research station within the Great Barrier Reef in Australia where the researchers conducted their work. Whie it may not be a dinosaur, it’s still an honour to have a species named after you, even if that species is a parasitic worm that lives in the urinary bladder of a grouper…

Ho, H.W., Bray, R.A., Cutmore, S.C., Ward, S. & Cribb, T.H. 2014. Two new species of Phyllodistomum Braun, 1899 (Trematoda: Gorgoderidae Looss, 1899) from Great Barrier Reef fishes. Zootaxa 3779(5): 551-562. doi: 10.11646/zootaxa.3779.5.5

—-

If you’re keeping track at home, that’s a total of 22 new animal species described in one day, which is actually below the daily average (~44 new species/day)! This isn’t including all the other things taxonomists work on, like identification keys, geographic records, phylogenetics, biogeography and the various other taxonomic housekeeping that needs to be constantly undertaken to ensure the classification of Earth’s biodiversity remains useful and up to date!

So the next time you look at an organism and are able to call it by name, take a moment to think about the taxonomist who worked out what that species is, gave it a name, and provided a means for you to correctly identify it, and perhaps check to see what new creatures are being identified each and every day!

—-

*- That I could find. I imagine there are more that were published in smaller circulation or specialized journals that I’m not aware of as well.